

Table of Contents

17EC52: Digital Signal Processing	.2
A. COURSE INFORMATION	2
1. Course Overview	2
2. Course Content	2
3. Course Material	3
4. Course Prerequisites	3
B. OBE PARAMETERS	3
1. Course Outcomes	3
2. Course Applications	4
3. Articulation Matrix	4
4. Mapping Justification	5
5. Curricular Gap and Content	6
6. Content Beyond Syllabus	6
C. COURSE ASSESSMENT	6
1. Course Coverage	6
2. Continuous Internal Assessment (CIA)	7
D1. TEACHING PLAN – 1	7
Module – 1	7
Module – 2	8
E1. CIA EXAM - 1	10
a. Model Question Paper – 1	.10
b. Assignment –1	.10
D2. TEACHING PLAN – 2	12
Module – 3	.12
Module – 4	.13
E2. CIA EXAM – 2	14
a. Model Question Paper – 2	.14
b. Assignment – 2	.15
D3. TEACHING PLAN – 3	17
Module – 5	.17
E3. CIA EXAM – 3	18
a. Model Question Paper – 3	.18
b. Assignment – 3	.19
F. EXAM PREPARATION	20
1. University Model Question Paper	.20
2. SEE Important Questions	.23
Dept:EC	

Checked by

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

 $\label{eq:Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels$

17EC52: Digital Signal Processing

A. COURSE INFORMATION

1. Course Overview

Degree:	B.E	Program:	EC
Year / Semester :	2018/5	Academic Year:	2018-2019
Course Title:	DIGITAL SIGNAL PROCESSING	Course Code:	17EC52
52Credit / L-T-P:	4	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	NAGARAJA M	Sign	Dt:
Checked By:	Dr. DEVANANDA S N	Sign	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Discrete Fourier Transforms (DFT): Frequency domain	10	Sampling	L2
	sampling and reconstruction of discrete time signals. DFT		analog signals	
	as a linear transformation, its relationship with other		DFT	
	transforms. Properties of DFT, multiplication of two DFTs-		properties	
	the circular convolution.			
2	Additional DFT properties, use of DFT in linear filtering,	10	DFT	L2
	overlap-save and overlap-add method. Fast-Fourier-		properties	
	Transform (FFT) algorithms: .Direct computation of DFT,		Radix 2	

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019
	Title:	Course Plan	Page: 3 / 30

Copyrigi	at ©2017. CAAS. All rights reserved.			
	need for efficient computation of the DFT (FFT algorithms).		Algorithm	
3	Radix-2 FFT algorithm for the computation of DFT and	10	Radix2	L5
	IDFT-decimation-in-time computation of DFT and IDFT-		DIT algorithm	
	decimation-in-time and decimation-in-frequency		Radix2	
	algorithms. Goertzel algorithm, and chirp-z transform.		DIF algorithm	
4	Structure for IIR Systems: Direct form, Cascade form,	10	IIR structure	L5
	Parallel form structures. IIR filter design: Characteristics of		IIR Filter	
	commonly used analog filter - Butterworth and Chebyshev		design using	
	filters, analog to analog frequency transformations. Design		analog filters	
	of IIR Filters from analog filter using Butterworth filter:			
	Impulse invariance, Bilinear transformation.			
5	Structure for FIR Systems: Direct form, Linear Phase,	10	FIR structure	L5
	Frequency sampling structure, Lattice structure. FIR filter		IIR Filter	
	design: Introduction to FIR filters, design of FIR filters using		design	
	- Rectangular, Hamming, Hanning and Bartlett windo		window	
	· · ·			

3. Course Material

Mod	Details	Available
ule		
1	Text books	
	Digital signal processing - Principles Algorithms & Applications, Proakis &	In Dept Library
	Monalakis, Pearson education, 4th Edition, New Delhi, 2007.	
2	Reference books	
	1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI, 2003.	In Central Library
	2. Digital Signal Processing, S. K. Mitra, Tata Mc-Graw Hill, 3rd Edition,	
	2010.	
	3. Digital Signal Processing, Lee Tan: Elsevier publications, 2007.	
3	Others (CD,Web, Video, Simulation, Notes etc.)	Notes

4. Course Prerequisites

SNo	Course	Course Name	Module	/ Topic / Desc	ription	Sem	Remarks	Blooms
	Code							Level
1	17EC44	Signals &	Module1	Elementary	signals,	4		L1,L2

Dept:EC	
Prepared by	Checked by
Approved by	
M.Nagaraja	Mrs.Mythreye
Dr.Devananda S N	

A INSTITUTE OF
PANCALORE *

		Sytems	operations on signals		
2	17EC44	Signals &	Module2 TD representation of LTI	4	L1,L2
		Sytems	s/m		
3	17EC44	Signals &	Module4 Fourier Transforms	4	L1,L2
		Sytems			

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach.	Concept	Instr	Assessmen	Blooms'
		Hours		Method	t Method	Level
CO1	Understand signal reconstruction	8	Sampling	Lecture	Assignmen	L2
	from the samples at Nyquist rate		analog		t	Understand
			signals		CIA	
CO2	Understand DFT behavior with input	7	DFT	Lecture	Assignmen	L2
	of Variable condition		properties		t	Understand
					CIA	
CO3	Understand DFT behavior with input	10	DFT	Lecture	Assignmen	L2
	of Variable condition		properties		t	Understand
					CIA	
CO4	Compare DFT with FFT on efficient	2	Radix 2	Lecture/	Assignmen	L2
	Computation		Algorithm	PPT	t	Understand
					CIA	
CO5	Develop DIT-FFT algorithm to find	6	Radix2 DIT	Lecture	Assignmen	L2
	DFT for a given input length		algorithm.		t	Understand
					CIA	
CO6	Develop DIF-FFT algorithm to find	6	Radix2 DIF	Lecture	Assignmen	L5
	DFT for a given input length		algorithm.		t	Evaluate
					CIA	
C07	Implement IIR structures using DF-1	5	IIR	Lecture/	Assignmen	L5
	&2		structure	РРТ	t	Evaluate
	from IIR filter co-efficients				CIA	
CO8	Design an IIR filter using analog	8	IIR Filter	Lecture	Assignmen	L5
	filters		design		t	Evaluate
	to meet given specification		using		CIA	
			analog			

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 4–09–2019
	Title:	Course Plan	Page: 5 / 30

			filters			
CO9	ImplementFIR structures using DF-1	5	FIR	Lecture	Assignmen	L5
	&2		structure		t	Evaluate
	from IIR filter co-efficients				CIA	
C10	Design an FIR filter using window	8	FIR Filter	Lecture	Assignmen	L5
	method to meet given specification		design		t	Evaluate
			using		CIA	
			windows			
-		62	-	-	-	-

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Analog to Digital Conversion	CO1	L2
2	Digital to Analog conversion	CO2	L2
3	Ease of DFT Computation	CO3	L2
4	Real time Processing	CO4	L2
5	Telecommunication	CO5	L5
6	Biomedical Signal Processing, image / speech / video Processing	CO6	L5
7	Design of IIR filter where linear phase is not a constraint	C07	L5
8	Communication Application.	CO8	L5
9	Design of FIR filter where linear phase is a requirement.	CO9	L5
10	Communication application.	CO10	L5

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes												
#	COs	PO	PO2	PO	PO	PO	PO6	PO	PO	PO9	PO	PO	PO	Level
		1		3	4	5		7	8		10	11	12	
1	Understand signal reconstruction from the samples at Nyquist rate	x	x	x	x	x					x			L2
2	Understand DFT behavior with input of Variable condition	x	x	x		x								L2
3	Understand DFT behavior with	x	x	x		х								L2

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

INSTITUTE OF
Soon B
e e
ANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 4–09–2019
Title:	Course Plan	Page: 6 / 30

	input									
	of Variable condition									
4	Compare DFT with FFT on	x	x	х		x				L3
	efficient Computation									
5	Develop DIT-FFT algorithm to	x	x	x		x				L2
	find DFT for a given input									
	length									
6	Develop DIF-FFT algorithm to	x	x	x		x				L2
	find DFT for a given input									
	length									
7	Implement IIR structures using			x	х	x				L3
	DF-1 &2									
	from IIR filter co-efficients									
8	Design an IIR filter using			х	х	x				L2
	analog filters									
	to meet given specification									
9	ImplementFIR structures using			х	х	x				L2
	DF-1 &2									
	from IIR filter co-efficients									
10	Design an FIR filter using			x	х	x				
	window method to meet given									
	specification									
CS501PC.	Average									
Note: Men	tion the mapping strength as	s 1,	2, o	r 3			 	-	 	

4. Mapping Justification

Mapping		Justification				
			Level			
CO	PO	-	-			
CO1	PO1	Apply the Knowledge of sampling to understand the concept of	L1			
		A–D & D–A conversion				
C01	PO2	To formulate the sampling rate of any digital system requires	L3			
		the Knowledge of Signal reconstruction				
C01	PO3	Sampling rate conditionsare used to build a digital system for				
		aliasing error.				
C01	P04	Investigate other sampling method to minimize the sampling				
		errors				
C01	P05	Tools:MATLAB,Scilab				
C01	P10	Communicate the algorithm to other programs as concept of				
		signal is interdisciplinary.				

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

PINSTITUTE OF	
	-
SANGALORE	

	SKIT	Teaching Process	Rev No.: 1.0							
	Doc Code:	SKIT.Ph5b1.F02	Date: 4–09–2019							
84NGALORE*	Title:	Course Plan	Page: 7 / 30							
Copyright ©2017. cAAS. All rights reserved.										

CO2 & CO3	P01	Apply the knowledge of basic signals to study the behavior of	
		DFT for varying input.	
CO2 & CO3	P02	Analyzing complex digital sytems requires the knowledge of	
		fundamental DFT properties.	
CO2 & CO3	P03	The DFT functionalities are used to analyze and implement	
		efficient system.	
CO4	P01	Apply the knowledge of DFT to formulate more efficient DFT	
		computation algorithm .	
CO4	P02	Analyzing digital sytem in computationally efficient manner	
		requires the knowledge of Fast Fourier algorithm.	
CO4	P03	FFT algorithms are used to implement real time system like live	
		telecasting	
CO5&CO6	P01	Apply the knowledge of Periodicity to understand and develop	
		DIT-FFT algorithm	
CO5&CO6	P02	For Analysis of complex digital system effectively and efficiently	
		requires the Knowledge of DIT-FFT algorithm.	
CO5&CO6	P03	DIT-FFT algorithms are used in real time applications.	
CO8&CO10	P03	Design of FIR filter to meet the given specification are used in	
		communication,Health monitoring system etc.	
CO8&CO10	P04	Conducting/Investigating filter design to meet the given	
		specification accurately, improvises the system	
CO8&CO10	P05	Modern tools SCILAB,MATLAB can be used to simulate for better	
		performance	
CO7&CO9	P03	Design of IIR filter to meet the given specification are used in	
		communication,Health monitoring system etc.	
CO7&CO9	P04	Conducting/Investigating filter design to meet the given	
		specification accurately, improvises the system	
CO7&CO9	P05	Modern tools SCILAB, MATLAB can be used to simulate for better	
		performance	

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

AN MONT	TE OF JEC	SKIT		Te	Rev No.: 1.0		
Es		Doc Code:	SKIT.	.Ph5b1.F02		Date	e: 4-09-2019
BANGA	LORE	Title:	Cour	se Plan		Page	e: 8 / 30
Copyright	©2017.	cAAS. All rights reserv	ved.				
5							

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching	ching No. of question in Exam				CO	Levels		
ule		Hours	CIA-	CIA-	CIA-	Asg	Extra	SEE		
#			1	2	3		Asg			
1	Discrete Fourier Transforms and	15	2	-	-	1	1	2	CO1,	L2
	properties of DFT								CO2	
2	Additional DFT properties,Fast-	10	2	-	-	1	1	2	CO3,	L2
	Fourier-Transform (FFT)								CO4	
	algorithms									
3	Radix-2 FFT algorithm for the	12	-	2	-	1	1	2	CO5,	L5
	computation of DFT and IDFT								CO6	
4	Structure for IIR Systems, Design	13	-	2	-	1	1	2	CO7,	L5
	of IIR Filters								C08	
5	Structure for FIR Systems, Design	13	-	-	4	1	1	2	CO9,	L5

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

	SKIT		Teac	hing Pro	ocess		R	ev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F02					D	ate: 4–09–2	2019
84NGALORE *	Title:	Course Plan					Pa	age: 9 / 30	
Copyright ©2017. cAAS. All rights reserved.									
of FIR	Filtors							CO10	-

			-	-	-	_	_		0010	
-	Total	63	4	4	4	5	5	10	-	-
	. Distingt sector was the sector								1	

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam - 1	30	C01, C02, C03, C04	L2
CIA Exam - 2	30	CO5, CO6, CO7, C08	L2,L5
CIA Exam - 3	30	CO9, CO10	L5
Assignment – 1	05	CO1, CO2, CO3, CO4	L2
Assignment – 2	05	CO5, CO6, CO7, CO8	L2,L5
Assignment – 3	05	CO9, CO10	L5
Seminar – 1	05	CO1, CO2, CO3, CO4	L2
Seminar – 2	05	CO5, CO6,CO7,CO8	L2,L5
Seminar – 3	05	CO9, CO10	L5
Other Activities – define		CO1 to Co9	L2, L3, L4
– Slip test			
Final CIA Marks	40	-	-
	(Reduced to 20)		

Note : Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Module – 1

Title:	Discrete Fourier Transform	Appr	15 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand signal reconstruction from the samples at Nyquist rate	CO1	L2
2	Understand DFT behavior with input of Variable condition	CO2	L3
b	Course Schedule	-	-
Class	Module Content Covered	СО	Level
No			
1	Sampling of Analog signals.	C01	L2
2	Type of spectrum obtained.		

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

STITUTE OF	CIVIT		D N	1.0
	SKII	I eaching Process	Rev No	D.: 1.0
	Doc Code:	SKI1.Ph5b1.F02	Date: 4	4-09-2019
Ganuriaht @20	Title:	Course Plan	Page:	10 / 30
3	Sampling of Co	ontinuous spectrum to discretize it		
4	Reconstruction	from samples		
5	Obtaining DTF	T		
6	Conversion fro	m DTFT to DFT		
7	Relationship of	DFT with other Trasforms(ZT, DTFT, DTFS)		
8	DFT and IDFT of	definition		
9	Computation o	f DFT by expansion method		
10	Computation o	f DFT by Matrix method		
11	Examples to co	ompute DFT for finite length input sequences		
12	Examples to co	ompute DFT for N-pt input sequences		
13	DFT properties	: Linearity Property	CO2	L2
14	Time shifting P	Property.		
15	Frequency Shif	ting Property.		
С	Application A	reas	СО	Level
1	Analog to digit	al conversion and vice versa	C01	L2
2	All Digital sign	al processing Applications	CO2	L2
d	Review Ques	tions	_	_
d	Review Ques Prove that the	tions sampling of DTFT of a sequence x(n) result in N-point	- CO1	- L1
d 1	Review Ques Prove that the DFT	tions sampling of DTFT of a sequence x(n) result in N-point	- CO1	- L1
d 1 2	Review Ques Prove that the DFT Find the 4 poin	tions sampling of DTFT of a sequence x(n) result in N-point nt DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and	- CO1 CO1	- L1 L3
d 1 2	Review Ques Prove that the DFT Find the 4 poin angle of X(k)	tions sampling of DTFT of a sequence x(n) result in N-point nt DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and	- CO1 CO1	- L1 L3
d 1 2 3	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT	tions sampling of DTFT of a sequence $x(n)$ result in N-point nt DFT of the sequence $x(n)=(0, 1, 2, 3)$ plot IX(k)I and of the sequence $x(n)=0.5^n$ U(n) for $0 \le n \le 3$ by	- CO1 CO1 CO2	- L1 L3 L2
d 1 2 3	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n)	tions sampling of DTFT of a sequence x(n) result in N-point nt DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by = a^n for $0 \le n \le N-1$	- CO1 CO1 CO2	- L1 L3 L2
d 1 2 3 4	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation	tions sampling of DTFT of a sequence x(n) result in N-point nt DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation	- CO1 CO1 CO2	- L1 L3 L2
d 1 2 3 4 5	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the 4 poin	tions sampling of DTFT of a sequence x(n) result in N-point nt DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by = a^n for $0 \le n \le N-1$ on between DFT and Z transformation nt DFT of the sequence x(n)= $6 + cos(2\pi/N n)$	- CO1 CO2 CO2	- L1 L3 L2 L4
d 1 2 3 4 5 6	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the 4 poin Find the 8 poin	tions sampling of DTFT of a sequence x(n) result in N-point nt DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by = a^n for $0 \le n \le N-1$ on between DFT and Z transformation at DFT of the sequence x(n)= $6 + cos(2\pi/N n)$ at DFT of the sequence x(n)= $(1,1,1,1,1,0,0)$	- CO1 CO2 CO2	- L1 L3 L2 L4
d 1 2 3 4 5 6 7	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the 4 point Find the 8 point	tions sampling of DTFT of a sequence x(n) result in N-point int DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation int DFT of the sequence x(n)= $6 + cos(2\pi/N n)$ of DFT of the sequence x(n)= $(1,1,1,1,1,0,0)$ DFT and IDFT of a sequence.	- CO1 CO2 CO2	- L1 L3 L2 L4
d 1 2 3 4 5 6 7 8	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the relation Find the 4 point Find the 8 point Define N point An analog sign	tions sampling of DTFT of a sequence x(n) result in N-point int DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by = a^n for $0 \le n \le N-1$ on between DFT and Z transformation int DFT of the sequence x(n)= $6 + \cos(2\pi/N n)$ of the sequence x(n)= $(1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. and is sampled at 10KHZ and the DFT of 512 samples is	- CO1 CO2 CO2 CO2	- L1 L3 L2 L4 L2
d 1 2 3 4 5 6 7 8	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the relation Find the 4 point Find the 8 point Define N point An analog sign computed Det	tions sampling of DTFT of a sequence x(n) result in N-point nt DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation nt DFT of the sequence x(n)= $6 + \cos(2\pi/N n)$ nt DFT of the sequence x(n)= $(1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. all is sampled at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral	- CO1 CO2 CO2 CO2	- L1 L3 L2 L4 L2
d 1 2 3 4 5 6 7 8	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the relation Find the 4 point Find the 8 point Define N point An analog sign computed Det samples of DFT	tions sampling of DTFT of a sequence $x(n)$ result in N-point int DFT of the sequence $x(n)=(0, 1, 2, 3)$ plot IX(k)I and of the sequence $x(n)=0.5^n$ U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation int DFT of the sequence $x(n)=6 + \cos(2\pi/N n)$ of the sequence $x(n)=(1,1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. and is sampled at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral r	- CO1 CO2 CO2 CO2	- L1 L3 L2 L4 L2
d 1 2 3 4 5 6 7 8 9	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the 4 poin Find the 4 poin Find the 8 poin Define N point An analog sign computed Det samples of DFT Compute the I	tions sampling of DTFT of a sequence $x(n)$ result in N-point int DFT of the sequence $x(n)=(0, 1, 2, 3)$ plot IX(k)I and of the sequence $x(n)=0.5^n$ U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation at DFT of the sequence $x(n)=6 + \cos(2\pi/N n)$ at DFT of the sequence $x(n)=(1,1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. The sequence at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral DFT of the sequence $x(n)=\cos(n\pi/4)$ for N=4 and plot	- CO1 CO2 CO2 CO2	- L1 L3 L2 L4 L2 L2
d 1 2 3 4 5 6 7 8 9	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the 4 point Find the 4 point Find the 8 point Define N point An analog sign computed Det samples of DFT Compute the I IX(k)I and angle	tions sampling of DTFT of a sequence x(n) result in N-point int DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)= 0.5^n U(n) for $0 \le n \le 3$ by = a^n for $0 \le n \le N-1$ on between DFT and Z transformation int DFT of the sequence x(n)= $6 + \cos(2\pi/N n)$ of the sequence x(n)= $(1,1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. all is sampled at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral DFT of the sequence x(n)= $\cos(n\pi/4)$ for N=4 and plot e of X(k)	- CO1 CO2 CO2 CO2	- L1 L3 L2 L4 L2 L2
d 1 2 3 4 5 6 7 8 9 10	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the relation Find the 4 point Find the 8 point Define N point An analog sign computed Det samples of DFT Compute the ID IX(k)I and angle Find the IDFT of	tions sampling of DTFT of a sequence $x(n)$ result in N-point int DFT of the sequence $x(n)=(0, 1, 2, 3)$ plot IX(k)I and of the sequence $x(n)=0.5^n$ U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation at DFT of the sequence $x(n)=6 + \cos(2\pi/N n)$ at DFT of the sequence $x(n)=(1,1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. all is sampled at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral DFT of the sequence $x(n)=\cos(n\pi/4)$ for N=4 and plot x of X(k) = (4,-2j, 0, 2j)	- CO1 CO2 CO2 CO2 CO2	- L1 L3 L2 L4 L2 L2 L5 L2
d 1 2 3 4 5 6 7 8 9 10 11	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the relation Find the 4 point Find the 8 point Define N point An analog sign computed Det samples of DFT Compute the ID IX(k)I and angle Find the IDFT of Explain Lineari	tions sampling of DTFT of a sequence $x(n)$ result in N-point int DFT of the sequence $x(n)=(0, 1, 2, 3)$ plot IX(k)I and of the sequence $x(n)=0.5^n$ U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation int DFT of the sequence $x(n)=6 + \cos(2\pi/N n)$ of DFT of the sequence $x(n)=(1,1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. tal is sampled at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral f DFT of the sequence $x(n)=\cos(n\pi/4)$ for N=4 and plot e of X(k) of X(K)=(4,-2j, 0, 2j) ty property of DFT with an example.	- CO1 CO2 CO2 CO2 CO2 CO2	- L1 L3 L2 L4 L4 L2 L5 L5 L2 L2 L3
d 1 2 3 4 5 6 7 8 9 10 11	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the relation Find the 4 poin Find the 4 poin Define N point An analog sign computed Det samples of DFT Compute the ID IX(k)I and angle Find the IDFT of Explain Lineari	tions sampling of DTFT of a sequence $x(n)$ result in N-point int DFT of the sequence $x(n)=(0, 1, 2, 3)$ plot IX(k)I and of the sequence $x(n)=0.5^n$ U(n) for $0 \le n \le 3$ by $=a^n$ for $0 \le n \le N-1$ on between DFT and Z transformation int DFT of the sequence $x(n)=6 + \cos(2\pi/N n)$ of the sequence $x(n)=(1,1,1,1,1,1,0,0)$ DFT and IDFT of a sequence. all is sampled at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral DFT of the sequence $x(n)=\cos(n\pi/4)$ for N=4 and plot e of X(k) of X(K)=(4,-2j, 0, 2j) ty property of DFT with an example.	- CO1 CO2 CO2 CO2 CO2 CO2 CO2	- L1 L3 L2 L4 L2 L2 L5 L2 L2 L3
d 1 2 3 4 5 6 7 8 9 10 11 e	Review Ques Prove that the DFT Find the 4 poin angle of X(k) Find the DFT evaluating x(n) Find the relation Find the relation Find the 4 poin Find the 4 poin Define N point An analog sign computed Det samples of DFT Compute the ID IX(k)I and angle Find the IDFT of Explain Lineari	tions sampling of DTFT of a sequence x(n) result in N-point int DFT of the sequence x(n)=(0, 1, 2, 3) plot IX(k)I and of the sequence x(n)=0.5 ⁿ U(n) for $0 \le n \le 3$ by = a^n for $0 \le n \le N-1$ on between DFT and Z transformation at DFT of the sequence x(n)=6 + cos(2 π /N n) at DFT of the sequence x(n)=(1,1,1,1,1,1,0,0) DFT and IDFT of a sequence. all is sampled at 10KHZ and the DFT of 512 samples is ermine the frequency sampling between the spectral DFT of the sequence x(n)=cos(n π /4) for N=4 and plot e of X(k) of X(K)=(4,-2j, 0, 2j) ty property of DFT with an example.	- CO1 CO2 CO2 CO2 CO2 CO2 CO2	- L1 L3 L2 L4 L4 L2 L5 L5 L2 L3 -

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

|--|

SKIT	Teaching Proce	SS	Rev No	o.: 1.0
Doc Code:	SKIT.Ph5b1.F02		Date: 4	4-09-2019
Title:	Course Plan		Page:	11 / 30
AAS. All rights reserv	ed.			

WALC	nue.	Course Plan	Page:	11/30				
Copyright ©2017. cAAS. All rights reserved.								
2								
3								
4			CO3	L3				
5								

Module – 2

Title:	DFT Properties	Appr	10 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Compare DFT with FFT on efficient Computation	CO3	L4
2	Develop DIT-FFT algorithm to find DFT for a given input length	CO4	L3
b	Course Schedule	-	-
Class	Module Content Covered	CO	Level
No			
16	Circular concept.	CO3	L2
17	Circular time shift property	CO3	L2
18	Frequency shift property	CO3	L2
19	Circular convolution	CO3	L2
20	Symmetry property	CO3	L2
21	Circular folding property	CO3	L2
22	Complex conjugate property	CO3	L2
23	Circular correlation property	CO3	L2
24	DFT of real even and real odd sequences	CO3	L2
25	Parsevals theorem	CO3	L2
26	Comparision of DFT and FFT	CO4	L2
27	Computational complexity	CO4	L2
С	Application Areas	СО	Level
1	Use to find performance of algorithm	CO3	L3
2	Used in Searching and sorting	CO4	L4
d	Review Questions	-	-
12	If $x(n) = (1, -1, 1, -1)$, find the DFT of the sequence $y(n) = x((n-2))_4$	CO3	L1
13	Suppose $x(n)$ is a sequence defined on 0-7 only as $(0,1,2,3,4,5,6,7)$	CO3	L3
	a) Illustrate $x((n-2))_8$ b)what is the DFT of $x((n-2)_8$		
14	Compute the DFT of the sequence $x(n) = -(1,0,1,0)$. Also find $y(n)$ if	CO3	L2
	$Y(k) = X((k-2))_4$		

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

ANSUTUTE OF	SKIT	Teaching Process	Rev No.:	1.0
	Doc Code:	SKIT.Ph5b1.F02	Date: 4-	09-2019
84NGALORE	Title:	Course Plan	Page: 12	2 / 30
Copyright ©20	17. cAAS. All rights reserv	ved.		
15	Compute the	5 pointDFT of the sequence $x(n)=(1,0,1,0)$ and hence	CO4	L4
	verify the DFT	properties		
16	The First 5 po	ints of the 8-point DFT of a real valued sequence are	CO4	L2
	(0.25,0.5-j0.5,	0,0.5-j0.86,0).Find the remaining 3 points		
17	Find 4 point ci	rcular convolution of the sequences $x1(n)=(1,2,3,1)$ and	CO3	L5
	x2(n)=(4,3,2,2).		
18	Prove the com	nutative property of circular convolution.	CO3	L2
19	Find the energ	y of 4 point sequence $x(n)=sin(2pi/N*n)$, $0 <= n <= 3$	CO3	L3
е	Experiences		-	-
1			CO1	L2
2				
3				
4			CO3	L3
5				

E1. CIA EXAM - 1

a. Model Question Paper - 1

Crs		CS501PC	Sem:	1	Marks:	30	Time:	75	5 minutes			
Code	e:											
Coui	rse:	Design and	Design and Analysis of Algorithms									
-	-	Note: Answer any 3 questions, each carry equal marks.					Mark	СО	Level			
									S			
1	а	Prove that	the sampli	ng of DTFT	of a sequer	ice x(n) res	ult in N-po	oint	5	CO1	L1	
		DFT										
	b	Find the 4	point DFT	of the sequ	ence x(n)=	(0, 1, 2, 3)	plot IX(k)I a	Ind	4	CO1	L2	
		angle of X	(k)									
	с	Find the I	OFT of the	e sequence	x(n)=0.5 ⁿ	U(n) for	0≤ n ≤3	by	6	CO1	L2	
		evaluating	$x(n) - a^n$ for	. () < n < N.	_1							
	4	Cind the re	lation both		d 7 transfe	rmation			Г	CO1	1.2	
	u	rind the re	Iation betw	een Dria	iu z transio	mation			2	CUI	LZ	
2	a	Find the 4	point DFT o	of the seque	ence x(n)=6	$+ \cos(2\pi/$	N n)		6	CO1	L2	
	b	Find the 8	point DFT o	of the seque	ence x(n)=(,1,1,1,1,1,	0,0)		10	CO1	L2	
	с	Define N p	oint DFT ar	nd IDFT of a	sequence				4	CO1	L2	

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

PINSTITUTE OF
ANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 4–09–2019
Title:	Course Plan	Page: 13 / 30

					L2
3	a	An analog signal is sampled at 10KHZ and the DFT of 512 samples is computed Determine the frequency spacing between the spectral samples of DFT	6	CO2	L2
	b	Compute the DFT of the sequence $x(n){=}cos(n\pi/4)$ for N=4 and plot $ X(k) $ and angle of $X(k)$	10	CO2	L2
	с	Find the IDFT of $X(K) = (4, -2j, 0, 2j)$	4	CO2	L2
4	а	If $x(n)=(1,-1,1,-1)$, find the DFT of the sequence $y(n)=x((n-2))_4$	4	CO2	L2
	b	Suppose $x(n)$ is a sequence defined on 0-7 only as $(0,1,2,3,4,5,6,7)$	5	CO2	L2
		a) IIIUStrate $X((n-2))_8$ b)what is the DFT of $X((n-2)_8$			
	с	Compute the DFT of the sequence $x(n) = -(1,0,1,0)$. Also find $y(n)$ if $Y(k) = X((k-2))_4$	5	CO2	L2
	d	Compute the 5 pointDFT of the sequence $x(n)=(1,0,1,0)$ and hence verify the DFT properties	6	CO2	L2
5	а	Prove that sampling of DTFT of a sequence $x(n)$ results in N point DFT	9	CO1	L2
	b	Define N point DFT and IDFT of a sequence	3	CO1	L2
	с	Find the relation between DFT and Z-Transform	3	CO1	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs Code: CS501PC Sem: I Marks: 5 / 10		Tii	me:	90 - 120	minut	es					
Cour	Course: Design and Analysis of Algorithms										
Note	Each	student	to answer 2	-3 assig	nments. Each	assignn	nent ca	rries equa	al mark.		
SNo	ι	JSN		Ass	ignment Des	criptio	n		Mark	СО	Level
									S		
1	1KT1	6ECOO3	Find the 4 po	oint DFT	of the sequer	ce x(n)	=(0,1,2	2,3)	5	CO1	L2
2	2 1KT16ECOO4 Compute the DFT of the Sequence $x(n) = cos(n\pi/4)$ for		or 5	CO2	L2						
	N=4 and plot $ X(k) $ and $< X(k)$.										
3	1KT1	6ECOO5	Find the 4 po	oint DFT	of the sequer	ce x\(n	i)=6+si	n(2π/4n)		CO2	L2
4	1KT1	6ECOO6	Find the	8	point DFT	of	the	sequenc	e 5	CO1	L2
			x(n)=(1,1,1,	1,1,1,0,0))						
5	1KT1	6ECOO8	Find the IDF	Γ of X(k)	=(4,-2j,02j)					CO2	L2
6	1KT16ECOO9 Compute inverse DFT of the sequence $X(k)=(2,1+j,0,1-j)$				CO2	L2					
7	1KT1	6ECO11	Find the DFT	of the	sequence x(n)	=0.5 ⁿ U	l(n) for	0 <n<3 b<="" td=""><td>γ</td><td>CO2</td><td>L2</td></n<3>	γ	CO2	L2
			evaluating x	(n)=a ⁿ fo	or 0 <n<n-1< td=""><td></td><td></td><td></td><td></td><td></td><td></td></n<n-1<>						

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

	SKIT	Teaching Process	Rev No.: 1.0				
	Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019				
84NGALORE *	Title:	Course Plan	Page: 14 / 30				
Copyright ©2017. cAAS. All rights reserved.							

8	1KT16ECO12	Find the Relation between DFT and ZT	CO2	L2
9	1KT16ECO13	Prove that the sampling of DTFT of a sequence $x(n)$ result	CO2	L2
		in N-point DFT.		
10	1KT16ECO14	An analog signal is sampled at 10kHz and the DFT of 512c	CO2	L2
		samples is computed. Determine the frequency spacing		
		between the spectral samples of DFT		
11	1KT16ECO15	Define N-pont DFT and IDFT of a sequence	CO2	L2
12	1KT16ECO16	Compute the 5 pointDFT of the sequence $x(n) = (1,0,1,0)$	CO2	L2
		and hence verify the DFT properties		
13	1KT16ECO17	Find the N - point DFT of $x(n) = anfor 0 < a < 1$.	CO2	L2
14	1KT16ECO18	A discrete time LTI system has impulse response h(n) =	CO2	L2
		26(n) output of the system if the input $x(n) = \{6(n) + 36(n)\}$		
		- 1) + 26(n using circular convolution.		
15	1KT16EC019	Determine 8 - point DFT of the signal $x(n) = \{1, 1, 1, 1, 1, \}$	CO2	L2
		magnitude and phase.		
16	1KT16EC020	Compute the DFT of the sequence $x(n) = \cos -lal 4$ for $N =$	CO2	L2
		4, plot 1x(k)1 d L x(k).		
17	1KT16EC021	ind the DFT of the sequence $x(n) = 0.5$ " $u(n)$ for $0 < n \3$	CO2	L2
		by evaluating x(n) = a" for \cdot '3 0. 0 < n < N –1		
18	1KT16EC022	state and prove the linearity property of DFT and	CO2	L2
		symmetrical property		
19	1KT16EC023	Find the IDFT of $X(K) = (255, 48.63 + j166.05, -51-4-j$	CO2	L2
		02, -78 -78.63-j46.05, -51-j102, 48.63 — 166j}.		
20	1KT16EC024	State and prove the relationship between z-transform and	CO2	L2
		DFT		
21	1KT16EC025	If w(n) = $1/2 + 1/2COS(2\pi/N(n-N/2))$ what is the DFT of	CO3	L2
		the window sequence $y(n) = x(n).w(n)$? Keep the answer in		
		terms of X(k).		
22	1KT16EC026	Compute the inverse DFT of the sequence $X(k) = \{2, 1 + j, $	CO3	L2
		0, 1– j)		
23	1KT16EC027	Given the following $x(n) : x(n) = 8(n) + 8(n-1) + 8(n-2)$	CO3	L2
		(i) Find the Fourier transform $X(ej^{w})$ and plot the $IX(ej^{w})I$ (ii)		
		Get the magnitude of the 4-point DFT of the first four		
		samples of $x(n)$ (iii)Get the magnitude of the 8-point DFT		
		of the first eight samples of x(n)		
24	1KT16EC028	Consider the sequence $x (n) = (0,1, 2,3, 4)$ and $x, (n) = .$	CO3	L2
		Determine the sequence $y(n)$ so that $Y(K) = X1(K) X2(K)$. X1		
		(K) and X2(K) are 5-point DFTs of $xi(n)$ and $x2(n)$		
		respectively.		
25	1KT16EC029	X(t) is an analog signal having a bandwidth of 4 kHz. It is	CO3	L2

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

STATUTE OFFICE	SKIT	Teaching Process	Rev No.: 1.0				
	Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019				
BANGALORE	Title:	Course Plan	Page: 15 / 30				
Copyright ©2017. cAAS. All rights reserved.							

		desired to compute the spectrum of this signal using N $=$		
		2Mpoint DFT with a resolution better than or equal to 50		
		Hz. Determine the minimum sampling rate and the		
		resulting resolution (M is an integer).		
26	1KT16EC032	Let xp(n) be a periodic sequence with fundamental period	CO3	L2
		N. Consider the following DFTs DFT Xp(n) Xi (k) Xp(n)		
		X3(k). What is the relationship between $xi(k)$ and $x3(k)$?		
27	1KT16EC033	Derive the DFT expression from the DTFT expression.	CO3	L2
28	1KT16EC034	Find the 4-point DFTs of the two sequences $x(n)$ and $y(n)$,	CO3	L2
		x(n) = (1, 2, 0, 1) y(n) = (2, 2, 1, 1)		
29	1KT16EC035	Find IDFT for the sequence : $x(k) = \{5, 0, (1 - j), 0, 1, 0, (1 - j), (1 $	CO3	L2
		+ j), 0)		
30	1KT16EC037	Find 5-point DFT of the sequence $x(n) = \{1, 1, 1\}$	CO3	L2
31	1KT16EC038	Determine 8 – point DFT of the signal $x(n) = \{1, 1, 1, 1, \}$	CO3	L2
		and plot its magnitude and phase spectra		
32	1KT16EC039	State and prove Linearity property of DFT.	CO3	L2

D2. TEACHING PLAN - 2

Module - 3

Title:	FFT	Appr	16 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Develop DIT-FFT algorithm to find DFT for a given input length	CO5	L5
2	Develop DIF-FFT algorithm to find DFT for a given input length	CO6	L5
b	Course Schedule		
Class	Module Content Covered	CO	Level
No			
1	Decimation in time FFT algorithm to compute DFT-Butterfly structure	C6	L5
2	Decimation in time FFT algorithm to compute IDFT-Butterfly	C6	L5
	structure		
3	FFT Data flow structure for 8 point DFT,16 point DFT	C6	L5
4	In phase computation	C6	L5
5	Cooley turkey algorithm	C5	L5
6	Decimation in frequency FFT algorithm to compute DFT-Butterfly	C5	L5
	structure		
7	Decimation in frequency FFT algorithm to compute IDFT-Butterfly	C5	L5
	structure		

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

ANSITUTE OF	SKIT	Teaching Process
(Frag)	Doc Code:	SKIT.Ph5b1.F02
* SANGALORE *	Title:	Course Plan
Copyright ©201	7. cAAS. All rights reserv	ved.
8	Chirp Z transf	formation
9	Goertzel Algoi	rithm
10	Linear filtering	g of Long data sequences using DFT
11	Overlap save r	nethod
12	Overlap add M	lethod
С	Application /	Areas
1	Real time Proc	essing
2	Telecommunic	cation
	Biomedical Sig	nal Processing, image / speech / video Processing
d	Review Ques	stions
1	plain with nec	essary diagrams and equations the concept of overlap -
	save method f	or linear filtering
2	Write a note o	n Goertzel algorithm
3	What is in-pla	ce computation? What is the total number of complex
	additions and	multiplications required for $N = 64$ point, if DFT is
	computed dire	ectly and if FFT is used? Also find the number of stages
	required and i	ts memory requirement.
4	rst five points	of the 8 - point DFT of a real valued sequence is given
	by $x(0) = 0$,	x(1) = 2 + 2j, x(2) =4j, x(3) = 2 - 2j, x(4) = 0.
	Determine the	e remaining points. Hence find the original sequence
	v(n) using DIT	- FFT algorithm

	x(n) using DIT – FFT algorithm.		
5	Find the 4 – pt circular convolution of $x(n) = \{1, 1, 1, 1\}$ and $h(n) =$	C6	L5
	{1, 0, 1, 0} using radix 2 DIF - FFT algorithm.		
6	In the direct computation of N-point DFT of $x(n)$, how many i)	C6	L5
	Complex multiplications, ii) Complex additions iii) Real		
	multiplications iv) Real additions and v) Trigonometric function		
	evaluations are required		
7	Find the output $y(n)$ of a filter whose impulse response $h(n) = \{1, 2\}$	C6	L5
	and input signal $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$ using		
	overlap save method		
8	Develop 8-point DIT-FFT radix-2 algorithm to compute DFT and	C5	L5
	draw the signal flow graph.		
9	Develop 8-point DIT-FFT radix-2 algorithm to compute IDFT and	C5	L5
	draw the signal flow graph.		
10	Develop 8-point DIF-FFT radix-2 algorithm to compute DFT and	C5	L5
	draw the signal flow graph.		
11	Develop 8-point DIF-FFT radix-2 algorithm to compute IDFT and	C5	L5
	draw the signal flow graph.		

Checked by

Rev No.: 1.0 Date: 4-09-2019 Page: 16 / 30

L5

L5

L5

L5

L5

Level

L5

L5

_

L1

L5

L5

L5

C5

C5

C5

C5

C5

СО

CO5

C06

_

CO1

C6

C6

C6

A HSTITUTE OF	ſ
	l
	ļ
SANGALORE	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019
Title:	Course Plan	Page: 17 / 30

е	Experiences	
1		
2		
3		
4		
5		

Module - 4

Title:	IIR FILTER	Appr	16 Hrs
		Time:	
а	Course Outcomes	_	Blooms
-	The student should be able to:	-	Level
1	Implement IIR structures using DF-1 &2 from IIR filter co-efficients	C07	L5
2	Design an IIR filter using analog filters to meet given specification	CO8	L5
b	Course Schedule		
Class	Module Content Covered	СО	Level
No			
1	Filter introduction	C07	L5
2	Direct form realization of IIR filters	C07	L5
3	Parallel realization of IIR filters	C07	L5
4	Cascade realization of IIR filters	C07	L5
5	Classification of Analog filters	C07	L5
6	Butterworth filters	C07	L5
7	Frequency transformation	C07	L5
8	Design of Low pass Butterworth filters	C07	L5
9	Chebychev filters	C07	L5
10	Digital filters	CO8	L5
11	Bilinear Transformation method to design IIR filters	CO8	L5
12	Impulse Invariant Transformation method to design IIR filters	CO8	L5
13	Backward difference method to design IIR filters	CO8	L5
C	Application Areas	СО	Level
1	Design of IIR filter where linear phase is not a constraint	CO8	L5
2	Communication Application.	C07	L5
d	Review Questions	_	-
1	Obtain direct form-I, direct form - II, cascade and parallel form	C07	L5
	realization for the following t t system: $y(n) = 0.75y(n - 1) - 0.125y(n - 1)$	1	

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

	SKIT	Teaching Process	Rev No.: 1.0
A MIGALORE TO	Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019
	Title:	Course Plan	Page: 18 / 30

Copyright @201	7. CAS. All lights reserved.		
	(-2) + 6x(n) + 7x(n-1) + x(n-2)		
2	Design an analog Chebyshev filter with the following specifications :	C07	L5
	Passband ripple : 1 dB for 0 Q 10 rad/sec Stopband attenuation : -60		
	dB for Q 50 rad/sec.		
3	Derive the expressions of order and cutoff frequency of a analog	CO8	L5
	butter worth filt		
4	Obtain Direct form I and II , Cascade and Parallel form realization for	C07	L5
	the following system		
	Y(n)=0.75y(n-1)-0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2)		
5	Design a Chebyshev analog filter (low pass) that has a -3dB cutoff	CO8	L5
	frequency of 100 rad/sce .9., O and a stopband attenuation 25dB or		
	greater for all radian frequencies past 250 rad/sec		
6	Compare Butterworth and Chebyshev filters.	CO8	L5
7	Let $H(s) = 2 \ 1$ represent the transfer function of LPF with a passband		L5
	of 1 s + s +1 frequency transformation (Analog to Analog) to find the		
	transfer function of fitter with passband 10 rad/sec and a centre		
	frequency of 100 rad/sec		
8	Obtain block diagram of the direct form I and direct form II		L5
	realization for a digital IIR fitter described by the system function.		
	8z3 - 4z 2 + 11z - 2 H(z) = (10 Marks) (z - 1)(z2 - z + 1 2)		
9	Design a Chebyshev filter to meet the following specifications: i) Pass		L5
	band ripple 2 db ii) Stop band attenuation 20 db iii) Pass band edge :		
	1 rad/sec iv) Stop band edge : 1.3 rad/sec		
10	Derive an expression for order of a low pass Butterworth filter.		L5
11	Explain how an analog filter is mapped on to a digital filter using		L5
	impulse invariance method. What are the limitations of the method?		
12	Obtain direct form – I and lattice structure for the system described		L5
	by the difference equation $y(n) = x(n) + 2 x(n - 1) + 3 x(n - 2) + 1$		
	x(n-3).		
е	Experiences	_	_
1			
2			
3			
4			
5			

TOO A DIE	
SANGALORE *	

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		CS501PC	Sem:	1	Marks:	30	Time:	75	5 minutes		
Code	e:										
Cou	rse:	Design and	l Analysis o	f Algorithm	IS	1					
-	-	Note: Ans	wer any 2	questions	s, each ca	r <mark>ry equal</mark> n	narks.	I	Mark	СО	Level
-				<u> </u>					S		
	a	realization	realization for a digital IIR fitter described by the system function. 8							CO5	
		$-4z/Z^{2}+$	11z — 2	C							
	D	Obtain block diagram of the direct form I and direct form I realization for a digital IIR fitter described by the system function $H(z) (z-1)/(z^2-z+12)$						ion			
2	а	Obtain dire	ect form -	I and lattic	e structure	for the sys	tem describ	bed	20	C07	L2
		by the difference equation $y(n) = x(n) + 2 x(n-1) + 3 x(n-2) + 1 x(n-3)$.						- 1			
	b	Obtain Direct form I and II, Cascade and Parallel form realization for the following system Y(n)=0.75y(n-1)-0.125y(n-2) + 6y(n) + 7y(n-1) + y(n-2)						for			L4
3	a	Derive the butter wor	expression th filt	ns of order	and cutof	f frequency	ofa ana	log	20	CO8	L1
	b	Compare B	utterworth	and Cheby	shev filters.					CO8	L2
4	a	Explain ho impulse inv	w an analo variance me	og filter is ethod. What	mapped or are the lim	n to a digit hitations of t	al filter usi the method	ing ?	20		L2
	b	Design an Passband r dB for Q 50	analog Che ipple : 1 dE) rad/sec.	byshev filt for 0 Q 10	er with the) rad/sec St	following s opband atte	pecification enuation : -	ns : -60			L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
Crs C	ode:	CS501PC	Sem:	1	Marks:	5 / 10	Time:	90 - 120	minu	tes
Cours	se:	Design ar	nd Analysis	of Algorith	nms		l			
Note:	Each	student t	o answer 2	–3 assignm	nents. Each	assignme	nt carries equa	al mark.		
SNo	ι	JSN		Assig	nment Des	cription		Mark	СО	Level
								s		

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

SAMET	TUTE OF TRO	SKI	Т	Teaching Process	Rev	No.: 1.	0
P		Doc C	ode:	SKIT.Ph5b1.F02	Date	e: 4–09	-2019
BAN	Title:			Course Plan	Pag	e: 20 /	30
Copyrig	nt ©2017.	cAAS. All rig	hts reserv	ved.		600	1.2
		SECOO3		pute the eight point DFT of the sequence $X(n) = \{ \frac{1}{2}, \frac{1}{2} \}$	5	08	LZ
			72, 72	, ⁹ 2, 0,0,0,0} using the inplace radix-2 decimation in			
2	1/10		Evola	hency FFT algorithm and obtain the direct form	E	<u> </u>	12
2		BECO04	ll rea	lization.	2	09	LS
3	1KT16	SECOO5	Obta	in the cascade realization for a system described by _		CO10	L4
4	16716	SECOOG	Evola	 ain the design of IIR filter by Impulse invariance	5	C09	13
			techr	nique.	5	005	LJ
5	1KT16	SECOO8	Detei	rmine the order and cut off frequency of Butterworth		CO10	L4
			analo	og highpass filter to meet the specifications:			
			Maxi	mum passband attenuation = 2 dB, Minimum stop			
			band	attenuation = 20 dB, Passband edge frequency =			
			200 ı	rad/sec, stopband edge frequency = 100 rad/sec.			
6	1KT16	SECOO9	Obta =	in the parallel realization of the system function H(z)		CO9	L3
7	1KT16	SECO11	Desig	gn a digital low pas Butterworth filter using bilinear			
			trans	formation to meet the specifications: i) -3 dB cut-off			
			frequ	iency at 0.5 π rad, ii) –15 dB at 0.75 π rad. Obtain			
			H(Z)	assuming T=1 sec			
8	1KT16	SECO12	What	are the characteristics of Chebyshev filters? Define its			
			magr	nitude response and list the properties of polynomial			
			for ty	/pe I Chebyshev filters.			
9	1KT16	SECO13	What	are the characteristics of Butterworth filters? Define			
			its ı	magnitude response and list the properties of			
			polyr	nomial			
10	1KT16	SECO14	Obta	in direct form-I, direct form - II, cascade and parallel			
			form	realization for the following t t system: $y(n) = 0.75y(n)$			
			-1) -	0.125y(n - 2) + 6x(n) + 7x(n - 1) + x(n - 2)			
11	1KT16	SECO15	Desig	gn an analog Chebyshev filter with the following			
			speci	fications : Passband ripple : 1 dB for 0 Q 10 rad/sec			
			Stop	pand attenuation : -60 dB for Q 50 rad/sec.			
12	1KT16	SECO16	Deriv	e the expressions of order and cutoff frequency of a			
			analo	og butter worth filt			
13	1KT16	5ECO17	Obta	in Direct form I and II , Cascade and Parallel form			
			realiz	zation for the following system			
—	1		Y(n)=0	0.75y(n-1)-0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2)			
14		DECO18	Desig	on a Chebyshev analog filter (low pass) that has a			
			-3dB	cutoff frequency of 100 rad/sce .9., O and a			
			stop	pand attenuation 25dB or greater for all radian			

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

COO TO
ANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019
Title:	Course Plan	Page: 21 / 30

		frequencies past 250 rad/sec		
15	1KT16EC019	Compare Butterworth and Chebyshev filters.		
16	1KT16EC020	Let $H(s) = 2 \ 1$ represent the transfer function of LPF with a		
		passband of 1 s $+$ s $+1$ frequency transformation (Analog		
		to Analog) to find the transfer function of fitter with		
		passband 10 rad/sec and a centre frequency of 100		
		rad/sec		
17	1KT16EC021	Obtain block diagram of the direct form I and direct form II		
		realization for a digital IIR fitter described by the system		
		function. $8z3 - 4z 2 + 11z - 2 H(z) = (10 Marks) (z - 1)$		
		(z2—z+ 1 2)		
18	1KT16EC022	Design a Chebyshev filter to meet the following		
		specifications: i) Pass band ripple 2 db ii) Stop band		
		attenuation 20 db iii) Pass band edge : 1 rad/sec iv) Stop		
		band edge : 1.3 rad/sec		
19	1KT16EC023	Derive an expression for order of a low pass Butterworth		
		filter.	 	
20	1KT16EC024	Explain how an analog filter is mapped on to a digital filter		
		using impulse invariance method. What are the limitations		
		of the method?		
21	1KT16EC025	Obtain direct form – I and lattice structure for the system		
		described by the difference equation $y(n) = x(n) + 2 x(n)$		
		-1) + 3 x(n - 2) + 1 x(n - 3).		
22	1KT16EC026	How to convert Analog High pass filter to analog low pass		
		filter,write the frequency transformation.		
23	1KT16EC027	How to convert Analog Low pass filter to analog low pass		
		filter,write the frequency transformation.	 	
24	1KT16EC028	How to convert Analog Band pass filter to analog low pass		
		filter, write the frequency transformation.	 	
25	IKII6EC029	How to convert Analog Band elimination filter to analog		
26		low pass filter, write the frequency transformation.		
26	IKII6EC032	What are the characteristics of Butterworth analog filter		
27	IKII6EC033	Write the design steps for design of IIR filter using Bilinear		
		transformation.		
28	IKII6EC034	Write the design steps for design of IIR filter using		
20		Backward difference method	 	
29	IKII6EC035	write the design steps for design of lik filter using		
20		Impulse invariant method	 	
30	IKII6EC037	List the number of Adders required for direct form-		
		i, airect form 2 method of lik filter implementation.		

Checked by

A NO	TUTE OF JEG	SKIT		Teaching Process	Rev	No.: 1.	0
E		Doc C	ode:	SKIT.Ph5b1.F02	Date	e: 4-09	-2019
BANG	SALORE	Title	e:	Course Plan	Page	e: 22 /	30
Copyrigh	nt ©2017.	cAAS. All rigl	hts reserv	ved.			
31	1KT16	5EC038	Com	pare direct form-1,direct form 2 method of IIR filter			
			imple	ementation.			
32	1KT16	5EC039	Write	a note on Analog filters.			

D3. TEACHING PLAN - 3

Module – 5

Title:	FIR FILTER	Appr	16 Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	ImplementFIR structures using DF-1 &2 from IIR filter co-efficients	CO9	L5
2	Design an FIR filter using window method to meet given specification	CO10	L5
b	Course Schedule		
Class	Module Content Covered	СО	Level
No			
1	Filter introduction	CO9	L5
2	Direct form realization of FIR filters	CO9	L5
3	Parallel realization of FIR filters	CO9	L5
4	Cascade realization of FIR filters	CO9	L5
5	Types of of windows	CO10	L5
6	Rectangular window sequence and its frequency response.	CO10	L5
7	Barlet window sequence and its frequency response.	CO10	L5
8	Blackman window sequence and its frequency respons	CO10	L5
9	Hanning , Hamming window sequence and its frequency response.	CO10	L5
10	FIR Digital filters	CO10	L5
11	Window method to design FIR filters	CO10	L5
12	Frequency sampling method to design FIR filters	CO10	L5
13	Backward difference method to design FIR filters	CO10	L5
С	Application Areas	CO	Level
1	Design of FIR filter where linear phase is a requirement.	CO9	L5
2	Communication application.	CO10	L5
d	Review Questions	_	-
1	Realize the linear phase FIR filter for the impulse response $h(n) = \Box(n)$	CO10	L1
	+ $\frac{1}{4}$ $\Box(n-1)$ - $\frac{1}{2}\Box(n-1)$ + $\frac{1}{4}\Box(n-3)$ + $\Box(n-4)$ using direct form		
2	Describe the frequency sampling realization of FIR filter.	CO10	L3
3	Determine the filter coefficients of an FIR filter for the desired	CO9	L2

Dept:EC

Prepared by Approved by M.Nagaraja Dr.Devananda S N Checked by

TUTE OF TRO	SKIT	Teaching Process	Rev No.: 1.0
SALONE T	Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019
	Title:	Course Plan	Page: 23 / 30

eep)iigiit eee	in a variantight of test real		
	frequency response $Hd(\omega)=e^{-j2w} w < pi/4$, $H_d(w)=0$ otherwise		
	Use rectangular window function. Find the frequency response $H(\omega)$		
	of the filter.		
4	Consider an FIR lattice filter with coefficients $K1 = 0.65$, $K2 = -0.34$ and	CO9	L4
	K3=0.8. Find its impulse response and draw the direct form structure.		
5	Determine the impulse response of an FIR filter to meet the		L2
	specifications: Passband edge frequency of 1.5 KHz, Stopband edge		
	frequency of 2 KHz, Sampling frequency of 8 KHz. Use the Hamming		
	window function		
6	Compare the different window functions used in FIR filter design		L5
7	Design a normalized linear phase FIR filter having the phase delay of		L2
	T 40 dB attenuation in the stopband. Also obtain the magnitude		
	/frequency response Use rectangular window.		
8	Determine the frequency response of the FIR if Hamming window is		L3
	used with $N = 8$.		
9	Compare IIR filter and FIR filters		L4
10	A FIR filter is given by, $y(n) = x(n) + 2 x(n-1) + 3 x(n-2) + x(n-1)$		L1
	3). Draw the direct form I and lattice 4 structure .		
11	Design a linear phase low pass FIR filter with 7 taps and cutoff		L4
	frequency of W_c , = 0.3pi rad, using the frequency sampling method.		
е	Experiences	_	_
1			
2			
3			
4			
5			

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs	Code	15EC52	Sem:V	I	Marks:	30	Time:	75 minutes		
Cou	rse:	Design and	l Analysis of	f Algorithm	S					
-	-	Note: Answer any 2 questions, each carry equal marks.					Mark	CO	Level	
								S		
1	a	Consider an FIR Lattice filter with coefficients k1=0.65, k2=-0.34, k3=0.8. Find its impulse response and the direct form structure					its 20	CO9	L5	
	b	Realize the FIR filter H(Z)= $\frac{1}{2}$ + 1/3 Z ⁻¹ +Z ⁻² + $\frac{1}{4}$ Z ⁻³ +Z ⁻⁴ + 1/3 Z ⁻⁵ +1/2 Z ⁻⁶ in Direct form					rect		L5	
2	a	Compare the	different wind	dow function	s Used in FIR	filter design		20	CO10	L5

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

SANGALORE *	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 4–09–2019
Title:	Course Plan	Page: 24 / 30

	b	Detremine the filter co-efficients of a FIR filter for the desired frequency response Hd(w)= e^{-j3w} , $ w < 0.3\pi/4 < w < \pi$ Determine the frequency response of the FIR filter if Hamming window is used with N=7			L5
3	a	Determine the Impulse response of an FIR filter to meet the specifications a) Pass band edge frequency of 1.5KHZ, b) stop band edge frequency of 2KHz c) Sampling frequency of 8KHz. Use the Hamming window function.	20	CO10	L5
	b	The frequency response of an FIR filter is given by $H(w)=e^{-j^{3}w}(1+1.8\cos^{3}w + 1.2\cos^{2}w + 0.5\cos^{2}w)$. Determine the coefficient of the impulse response of the FIR filter.			L5
4	a	Describe the frequency sampling realization of FIR filter.	20	CO10	L5
	b	Determine the filter coefficients of an FIR filter for the desired frequency response $Hd(\omega)=e^{-j^{2w}} w < pi/4$, $H_d(w)=0$ otherwise Use rectangular window function. Find the frequency response $H(\omega)$ of the filter.			L5

b. Assignment - 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs C	Crs Code: CS501PC Sem: I Marks: 5 / 10 Time:			Time:	90 - 120) minut	es			
Cour	se:	Design	and Analysis	of Algorith	ims					
Note	: Each	student	to answer 2-	-3 assignm	ents. Each	assignmer	nt carries equ	al mark.		
SNo	ι	JSN		Assign	ment Des	cription		Mark	CO	Level
								S		
1	ΙΚΤΙ	6ECOO3	Consider an F k3=0.8. Find its	IR Lattice fi impulse resp	Iter with coo oonse and the	efficients k1 direct form	L=0.65, k2=-0.3 structure	84, 5	CO9	L2
2	$\frac{1 \text{ KT16ECOO4}}{\text{ Realize the FIR filter H(Z)} = \frac{1}{2} + \frac{1}{3} \text{ Z}^{-1} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{2}{3} + \frac{1}{3} \text{ Z}^{-5} + \frac{1}{2} \text{ Z}^{-6}}{\text{ in Direct form}}$					z⁻ ⁶ 5	CO9	L3		
3	1KT1	6ECOO5	Compare the di	fferent wind	ow functions	Used in FIR f	ilter design		CO10	L4
4	1KT1	6ECOO6	Detremine tl	he filter c	o–efficients	of a FIR	filter for t	ne 5	CO10	L3
			desired frequ	uency resp	onse Hd(w)	e=e ^{−j3w} , w	v < 0 3π/4< v	~I		
	< π Determine the frequency response of the FIR filter if Hamming window is used with N=7						ng			
5	ικτι	6ECOO8	Determine th	ne Impulse	response	of an FIR	filter to me	et		
			the specifica [.]	tions a) Pa	iss band ed	ge freque	ncy of 1.5KH	Ζ,		
	b) stop band edge frequency of 2KHz c) Sampling						ng			
			frequency of	8KHz. Use	the Hamm	ing windo	w function.			
6	1KT1	6ECOO9	The frequenc	cy response	e of an FIR f	ilter is giv	en by			
			H(w)=e ^{-j3w} (1+1	.8cos3w +	1.2cos2w	+ 0.5cosw)).Determine t	he		

Checked by

	SKIT	Teaching Process	Rev No.: 1.0					
	Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019					
&ANGALORE *	Title:	Course Plan	Page: 25 / 30					
Copyright ©2017. cAAS. All rights reserved.								

Copyrigi	IL @2017. CAAS. All Hg		 	
		coefficient of the impulse response of the FIR filter.	 	
7	1KT16ECO11	Describe the frequency sampling realization of FIR filter.		
8	1KT16ECO12	Determine the filter coefficients of an FIR filter for the		
		desired frequency response $Hd(\omega)=e^{-j2w}$ $w ,$		
		$H_d(w)=0$ otherwise		
		Use rectangular window function. Find the frequency		
		response $H(\omega)$ of the filter.		
9	1KT16ECO13	Determine the filter coefficients of an FIR filter for the		
		desired frequency response $Hd(\omega)=e^{-j2w}$ w <pi ,<="" 4="" th=""><th></th><th></th></pi>		
		$H_d(w)=0$ otherwise		
		Use Barlet window function. Find the frequency response		
		$H(\omega)$ of the filter.		
10	1KT16ECO14	Determine the filter coefficients of an FIR filter for the		
		desired frequency response $Hd(\omega)=e^{-j2w}$ w <pi ,<="" 4="" th=""><th></th><th></th></pi>		
		$H_{d}(w)=0$ otherwise		
		Use Blackman window function. Find the frequency		
		response $H(\omega)$ of the filter.		
11	1KT16ECO15	Determine the filter coefficients of an FIR filter for the		
		desired frequency response $Hd(\omega)=e^{-j2w}$ w <pi .<="" 4="" th=""><th></th><th></th></pi>		
		H₄(w)=0 otherwise		
		Use Hamming window function. Find the frequency		
		response $H(\omega)$ of the filter.		
12	1KT16ECO16	Determine the filter coefficients of an FIR filter for the		
		desired frequency response $Hd(\omega)=e^{-j2w}$ w <pi .<="" 4="" th=""><th></th><th></th></pi>		
		H₄(w)=0 otherwise		
		Use Hanning window function. Find the frequency		
		response $H(\omega)$ of the filter.		
13	1KT16ECO17	Determine the filter coefficients of an FIR filter for the		
		desired frequency response $Hd(\omega)=e^{-j2w}$ w <pi ,<="" 4="" th=""><th></th><th></th></pi>		
		H _d (w)=0 otherwise		
		Use Kaiser window function. Find the frequency response		
		$H(\omega)$ of the filter.		
14	1KT16ECO18	Write the Rectangular window sequence and plot its		
		magnitude and phase response		
15	1KT16EC019	Write the Barlet window sequence and plot its magnitude		
		and phase response		
16	1KT16EC020	Write the Blackman window sequence and plot its		
		magnitude and phase response		
17	1KT16EC021	Write the Hanning window sequence and plot its		
		magnitude and phase response		

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

UTE OF JECH	SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F02		Date: 4-09-2019
ALORE	Title:	Course Plan		Page: 26 / 30

18	1KT16EC022	Write the Hamming window sequence and plot its						
10	1471650023	Write the Kaiser window sequence and plot its magnitude	rite the Kaiser window sequence and plot its magnitude					
19	TKTTOEC023	and phase response						
20	1// 1// 2//	and phase response						
20	IKII6EC024	write the design steps to design FIR filter using						
21		Write the design store to design FID filter using						
21	IKII0EC025	write the design steps to design FIR filter using						
		Exclangular window when window function is given.						
22	IKTI6EC026	Explain lattice structure of FIR Fliter realization.						
23	TKT16EC027	State and explain condition required for design of linear						
		phase FIR filter.						
24	TKT16EC028	Realize the Linear phase FIR filter having the following impulse response $h(n) = \delta(n) + 1/4 \delta(n-1) - 1/8 \delta(n-2) + 1/4 \delta(n-3)$						
		response n(n)=0(n)+1/4 0(n+1)=1/80(n+2)+1/40(n+3)						
25	1KT16EC029	Prove parsevals relation as applied to DFT						
26	1KT16EC032	For $x(n) = \{7,0,8,0\}$ find $y(n)$ if $Y(K) = X((K-2))_4$						
27	1KT16EC033	State and prove the following properties						
		a)Symmetry property b) Parsevals therem						
28	1KT16EC034	State and prove convolution property						
29	1KT16EC035	Given $x(n) = \{1,2,3,4\}$ and $h(n) = \{1,2,2\}$ compute I) Circular						
		Convolution ii) Linear convolution iii) Linear convolution						
		using circular convolution						
30	1KT16EC037	First five points of the 8 - point DFT of a real valued						
		sequence is given by $x(0) = 0$, $x(1) = 2 + 2j$, $x(2) =4j$,						
		x(3) = 2 - 2j, $x(4) = 0$. Determine the remaining points.						
		Hence find the original sequence x(n) using DIT - FFT						
		algorithm.						
31	1KT16EC038	Find the 4 - pt circular convolution of $x(n) = \{1, 1, 1, 1\}$						
		and $h(n) = \{1, 0, 1, 0\}$ using radix 2 DIF – FFT algorithm						
32	1KT16EC039	d the circular convolution of $x(n) = \{1, 1, 1, 1, 1\}$ and $h(n) =$						
		{ 1, 0, 1, 0 } using DIF-FFT algorithm						
33		Derive DIT-14F1 algorithm for $N = 4$. Draw the complete						
		signal How graph?						
34		What are the differences and similarities between DIF-FFT						
		and DIT-FFT algorithm?						
	1							

F. EXAM PREPARATION

1. University Model Question Paper

Course:	Design and Analysis of Algorithms				Month / Year	May /2018	
Crs Code:	CS501PC	Sem:		Marks:	100	Time:	180

Dept:EC	
Prepared by	Checked by
Approved by	
M.Nagaraja	Mrs.Mythreye
Dr.Devananda S N	

A INSTITUTE OF JA
SANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 4–09–2019
Title:	Course Plan	Page: 27 / 30

									minut	es
-	Note	Answer all FIVE	E full questio	ns. All ques	tions carry ed	qual marks.		Mark	СО	Leve
			•	·	,			s		1
1	a	Explain the frequency domain sampling and reconstruction of discrete time signals.						8	CO1	
	b	The first five po are {0.25, 0.125-j0.3 points.	oints of the e	ight point DF 5-j0.0518, 0}.	T of a real va	alued seque e remaining	nce three	3		
	С	Determine the x2(n)={4,3,2,2}	circular conv using time c	olution of the	e sequences, bach.	x1(n) = {1,2	2,3,1},	5	CO2	
2	2	Obtain the rela	ationship of	DET with the	- 7-transform	n		5	C03	
2	b	Show that the n respective time sequence	nultiplication c	of two DFTs le	eads to circula	ir convolutio	n of	7	205	
	c	Consider a finite (i) Determine (ii) Determine Imaginary[e duration sec the sequenc the sequenc [X(k)]	quence x(n) = e y(n) with si ce v(n) with s	{0,1,2,3,4}. ix point DFT ` six point DFT	Y(k) = Real V(k) =	[X(k)]	4	CO4	
		Evoloin the line	or filtoring o	flong data a		ing overlan	001/0	6	COL	
3	a	method.	ear mitering o			ing overlap-	save	0	COS	
	b	The 4-point DF DFTs of the fol i) X ₁ (ii) ii)	T of a real so lowing. (n) = $(-1)^n x(n)$ $x_2(n)=x((n+1)$ $x_3(n) = x(4-n)$	equence x(n), I))₄,) is X(k) = (1,	j, 1, -j). Fin	d the	6		
	с	Explain the com are the efficient algorit	thms for the	mplexity of di	irect computat	tion of DFT.	What	4	CO6	
4	a	Find the respon (3,2,1) for the in and add method	se of an LTI s iput x(n) = (2, d. Use 8 poin	system with a -1, -1, -2, -3, t circular con	n impulse res 5,6,-1, 2,0,2, ivolution.	ponse h(n) = 1) using ove	= rlap	7	C07	
	b	The 5-p0int DF Compute Y(k), i y(n)=x*(n).	T of a comple f	x sequence x	:(n) is X(k)=(j,	1+j, 1+j2, 4-	+j).	4		
	С	State and prov	e the propert	y of circular	time shift of a	a sequence.		5	C08	
5	a	Derive the radix flow graph	-2 decimatior	n in time FFT	algorithm and	l draw the si	gnal	8	CO9	

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

Contraction of the		SKIT	Teaching Process	Rev N	o.: 1.0	
		Doc Code:	SKIT.Ph5b1.F02	Date:	4-09-	2019
Title:			Course Plan	Page:	28 / 3	0
Copyrig	ght ©2017	. cAAS. All rights reserv				
		for eight point	t DFT computation.	0	6010	
	b	Find the numbe	er of complex additions and complex multiplications required	3	COTO	
		101 120- naint DET aam	nutation using i) Direct method, ii) FET method, What is the			
		speed improve	putation using i) Direct method, ii) FFT method. What is the			
	<u>с</u>	Find the A-noint	real sequence $y(n)$ if its DET samples are $Y(0)=6$, $Y(1)=-2+i2$	5		
	Ľ	X(2)=-2	Teal sequence $X(1)$, it is Diff samples are $X(0)=0$, $X(1)=2$, $Z(1)=2$,	5		
		Use DIF-FFT a	algorithm.			
6	а	Compute the e	ight point DFT of the sequence $x(n) = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0.0, 0.0\}$	8		
		using the	5 - []			
		inplace radix-2	2 decimation in frequency FFT algorithm.			
	b	Explain the G	oertzel algorithm and obtain the direct form II	8	CO9	
		realization.				
	с			_		
7	a	Obtain the case	cade realization for a system described by $H(z) =$	5	C010	
	b	Explain the de	esign of IIR filter by Impulse invariance technique.	6		
	с	Determine the	order and cut off frequency of Butterworth analog highpass	5		
		filter to meet th	e specifications: Maximum passband attenuation = 2 dB,			
		Minimum stop				
		200 rad/sec, s				
		frequency = 10	UU rad/sec.			
0	-			6		
0	d	Obtain the para	allel realization of the system function H(z) =	0		
	h	L Design a digita	I low has Butterworth filter using hilinear transformation to	6		
	U	meet the speci	fications: i) -3 dB cut-off frequency at 0.5 π rad. ii) -15 dB at	U		
		0.75π rad Obt	rain			
		H(7) assuming				
	с	What are the c	haracteristics of Chebyshev filters? Define its magnitude	4		
	_	response and	-			
		list the proper				
9		Realize the lin	3			
		h(n)= □(n)+ ¼ □(n-1)- ½□(n-1)+ ¼ □(n-3)+ □(n-4) using direct form.				
		Describe the f	7			
		Determine the	filter coefficients of an FIR filter for the desired frequency	6		
			、 、			
		response H _d (ω				
Dent	FC					

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

STATE OF		SKIT	Teaching Process	Rev No.: 1.0		
		Doc Code:	SKIT.Ph5b1.F02	Date:	4-09-	2019
BA	WGALORE *	Title:	Course Plan	Page:	29 / 3	0
Copyrig	ght ©2017	. cAAS. All rights reser	ved.			
		Use rectangu	lar window function. Find the frequency response $H(\omega)$ of			
		the filter.				
10	a	Consider an FIR lattice filter with coefficients K1=0.65, K2=-0.34 and7K3=0.8. Find its7				
		imnulse resno	onse and draw the direct form structure			

L				
	b	Determine the impulse response of an FIR filter to meet the specifications:	6	
		Passband		
		edge frequency of 1.5 KHz, Stopband edge frequency of 2 KHz,		
		Sampling frequency of 8 KHz. Use the Hamming window function.		
ſ	с	Compare the different window functions used in FIR filter design.	3	

2. SEE Important Questions

Course:		Digital Signal Processing Month						/ Year	May /	2018
Crs	Code:	15EC52 Sem: 5 Marks: 100 Time:						180		
		n							minut	es
	Note	Answer all FIV	E full question	ons. All ques	tions carry	equal marks		-	-	
Мо	Qno.	Important Que	estion					Mark	СО	Year
dul								S		
e										
1	1	Find the N poir	nt DFT of x(n)	=a ⁿ for 0 <a< td=""><td><1</td><td></td><td></td><td>4</td><td></td><td>2016</td></a<>	<1			4		2016
	2	Compute the D	FT of the sequ	ience x(n)=co	s(npi/4) for N	\= 4		4		2015
	3	Find the relatior	n between DF	T and Z transf	orm			4		2015
	4	Prove that s	ampling of	DTFT of a	sequence	x(n) resu	ılt in N	5		2014
		point DFT								
	5	Find the IDFT	of X(K)=(4, -	-2j, 0, 2j)				3		2016
										<u> </u>
2	1	Prove parseva	ls relation as	applied to [DFT			5		2016
	2	For x(n)={7,0,	8,0} find y(n)) if Y(K)=X((K-2)) ₄			6		2016
	3	State and prov	e the follow	ing propertie	es			8		2015
		a)Symmetry p	roperty b) Pa	rsevals there	em					
	4	State and prov	/e convolutio	on property				6		2016
	5	Given x(n)={1	,2,3,4} and h	n(n)={1,2,2} o	compute I) (Circular Con	volution	8		2016
		ii) Linear conv	olution iii) Li	near convolı	ution using	circular con	volution			
3	1	First five poir	nts of the 8	- point DFT	Г of a real	valued sequ	uence is	10		2016
		given by x(0)	= 0, x(1) = 2	2 + 2j, x(2)	=4j, x(3)) = 2 - 2j, x	(4) = 0.			
		Determine the	e remaining	points. Her	nce find the	e original s	equence			
		x(n) using DIT	– FFT algori	thm.						
	2	Find the 4 – p	ot circular co	nvolution of	$f(x(n) = \{ 1, $	1, 1, 1} and	d h(n) =	10		2016

Dept:EC Prepared by Approved by M.Nagaraja Dr.Devananda S N

Checked by

MSTITUTE OF
Some and
84NGALORE *

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 4-09-2019
Title:	Course Plan	Page: 30 / 30

Copyrig	nt ©201	7. CAAS. All rights reserved.		
		{1, 0, 1, 0} using radix 2 DIF - FFT algorithm		
	3	d the circular convolution of $x(n) = \{1, 1, 1, 1, 1\}$ and $h(n) = \{1, 0, 1, 0\}$ using DIF-FFT algorithm	12	2015
	4	Derive DIT-14F1 algorithm for $N = 4$. Draw the complete signal How graph?	8	2015
	5	What are the differences and similarities between DIF-FFT and DIT-FFT algorithm?	4	2014
4 1	1	Design an analog Chebyshev filter with the following specifications :	12	2016
		Passband ripple : 1 dB for 0 Q 10 rad/sec Stopband attenuation : -60 dB for Q 50 rad/sec.		
	2	Derive the expressions of order and cutoff frequency of a analog butter worth filter	8	2016
	3	Design a Chebyshev analog filter (low pass) that has a -3dB cutoff frequency of 100 rad/sce and stop band attenuation 25dB or greater for all radian frequencies past 250 rad/sec	14	2015
	4	Compare Butterworth and Chebyshev filters.	03	2015
	5	Let $H(s) = 1/(s2+s+1)$ represent the transfer function of LPF with a passband of 1 rad/sec .Use frequency transformation (Analog to Analog) to find the transfer function of fitter with passband 10 rad/sec and a centre frequency of 100 rad/sec	03	2015
5	1	Design a symmetric FIR low pass filter whose desired frequency response is given as : $H_a(w) = e^{-jw}$ for length of the filter should be 7 and $w_{01} = 1$ rad/sample. Use rectangular window.	10	2016
	2	Design a normalized linear phase FIR filter having the phase delay of $T=40$ dB attenuation in the stopband. Also obtain the magnitude /frequency response of the filter	10	2016
	3	Obtain the direct form realization of linear phase FIR system given by $H(z) = 1 + 2/3 z^{-1} + 15/8 z^{-2}$	03	2015
	4	Compare IIR filter and FIR filters	6	2015
	5	The desired frequency response of a low pass fitter is given by $Hd(w)=e-j3w$ for $ w < 3pi/4 \ 0$, otherwise. Determine the frequency response of the FIR if Hamming window is used with N = 7.	10	2015